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Summary 

In a solid-state laser, cooperative upconversion can be beneficial or deleterious, i.e., it can 
populate or de-populate the upper laser level, depending on the ion and transitions involved.  In 
the case of erbium-doped yttrium aluminum garnet (Er:YAG), at excitation densities typically 
occurring in our lasers, the dominant upconversion process occurs when two ions in the first 
excited manifold 4I13/2 are in close proximity.  This competes with stimulated emission from the 
4I13/2 manifold.  The coefficient that characterizes this process has been measured in the past with 
pulsed sources by examining the non-exponential decay of fluorescence from the various levels 
involved.  We propose a steady-state technique for measuring the upconversion coefficient that 
uses the same continuous wave (CW) source that is used to pump an Er:YAG laser.  We find that 
Cup is proportional to [Er], as expected, but approximately eight times larger than previously 
reported values. 
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1. Introduction/Background 

Er:YAG is a promising material for eye-safer lasers because emission from the 4I13/2 manifold is 
in the 1.6-µm spectral region.  Er:YAG can also address the need for a low quantum defect, 
because the crystal field splitting is large enough at 300 K that one can pump and lase between 
the lowest two manifolds.  The energy levels in the lowest four manifolds are shown in figure 1.   
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Figure 1  Energy levels in the lowest four manifolds of Er:YAG.  The scale on the 
right is magnified. 

When pumped at 1532 nm at room temperature, Er:YAG lases at 1645 nm, representing a 
quantum defect of about 7%.  A small quantum defect is advantageous for high average power 
lasers, where heat generation is proportional to the input power and quantum defect.  However 
the upper laser level can be depleted by cooperative pair upconversion (CPU), because the 4I9/2 
manifold in Er:YAG is at 12301–12760 cm–1, about twice the energy of the 4I13/2 manifold at 
6544–6879 cm–1.  In this (lowest order) process, the electron in one ion jumps to the 4I9/2 
manifold and the electron in the other ion returns to the ground state 4I15/2 manifold. 

Higher order upconversion also occurs.  For example, when Er:YAG is pumped at 1532 nm, 
green light is emitted at ~500 nm.  Although it is possible for multiple photons to excite a single 
ion in stepwise fashion before it relaxes, the majority of Er ions above the 4I13/2 manifold arrive 
there through a cooperative process (1). 



 
 

 4 

2. Experiment/Calculations 

The schematic for the experimental setup is shown in figure 2.  A 5-MHz linewidth distributed 
feedback Bragg (DFB) laser diode is temperature tuned to resonance with the 1532-nm Er 
absorption line (figure 3).  It seeds the Er fiber amplifier with 14 mW.  The 1–3 W output of the 
amplifier is collimated, chopped, and focused, then passes through the sample before falling on 
an indium gallium arsenide (InGaAs) photodiode connected to a lock-in amplifier (LIA).  The 
optical chopper reduces the duty cycle to 10%, to minimize sample heating.  The intensity can be 
varied over a factor of 10 by changing the power of the beam, but it can be varied by 3–4 orders 
of magnitude by translating the sample axially through the focus.  The Er concentration was 
varied from 0.5–5% by using different samples of 1-mm thickness and 10-mm diameter (2). The 
samples are anti-reflection coated on both sides. 

 

Figure 2.  Experimental setup. 

With the sample removed, the photodiode measures the incident power.  With the sample in 
place, the motorized stage moves in the z-direction through the focus with steps of 2 mm, under 
computer control.  Focal lengths of 15  and 20 cm were used.  The computer also reads from an 
analog-to-digital converter connected to the analog output of the LIA.  Room light and 
upconversion fluorescence light are blocked by a long-wave-pass filter.  A diffuser and a series 
of neutral density filters in front of the photodiode reduce the current to ~0.2 µA, a level that can 
be handled by the LIA.   
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Figure 3.  Absorption cross section of Er:YAG for a range of crystal temperatures. 

A preliminary run is made to determine the intensity profile of the beam at each z position.  
These data were obtained by measuring the transmitted power when a razor blade was translated 
across the beam in the x direction.  The transmitted power corresponds to an integral over a half-
space of the two-dimensional Gaussian intensity profile.  This reduces to the cumulative 
distribution function, equation 1 (3).  The beam radius, w, is obtained by fitting the experimental 
data to equation 2.  P is the total incident power.  
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The theoretical equation for a TEM00 Gaussian beam radius in homogeneous media (4) was then 
fit to the data (figure 4).  The good fit indicates a fundamental Gaussian beam.   
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Figure 4.  Beam radius data and a least squares theoretical fit for the 20-cm lens. 
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Next, a nominal upconversion value upC~  was obtained from the literature (1).  For each sample 

upC~  is calculated from equation 4.  The relation is simply a proportionality constant relating the 

upconversion rate to the density of Er ions. 

 YErup NfC 38106.3~ −×=         
OAlY

YAG
AvY MMM

NN
1253

3
++

=
ρ  (4) 

The theoretical transmission curve as a function of z was calculated for a few multiples of upC~ .  

The model that follows assumes a uniform intensity (plane wave); therefore, the Gaussian profile 
has to be simulated as a superposition of different intensities, each propagated separately through 
the sample.   



 
 

 7 

The plane wave model includes rate equations for the lowest four manifolds of Er3+, grouping 
together the population of each manifold. 
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Here, N1 is the population of the lowest 4I15/2 level, IP is the pump intensity, σP is the absolute 
cross section, fep (fap) is the probability that an electron is in a state that can emit (absorb) a pump 
photon, Wij is the relaxation rate from level i to level j, and Cup is the upconversion parameter.  
Also included in the model is a propagation equation for the pump beam: 

 ( ) ppapeppp
p INfNfI
zd

Id
ασ −=−= 12 . (9) 

Equations 5–9 are solved in steady state using MATLAB®.  The effective absorption coefficient 
effα  is calculated from the transmission data, using equation 10: 

 ( ) ( )LILI effpp α−= exp0)(  (10) 

There are a number of assumptions made in this experiment and its analysis.  First, the beam 
radius is assumed to be constant throughout the 1-mm thickness of the sample.  This makes the 
intensity and transmission calculations much easier, and is supported by all samples having a 
thickness smaller than the confocal parameter, or Rayleigh range.  Another assumption is that 
scattering losses were negligible.  This is well-justified by the excellent optical quality of the 
sample.  As stated previously, the mathematical model only accounts for CPU to the 4I9/2 
manifold; we neglect the effect of multiple photons exciting a single ion or CPU occurring to 
higher energy states.  The model is also “local” in the sense that the populations at any point in 
space are determined by the intensity at that point.  This assumes that the excitations only 
migrate distances that are short compared to the beam diameter. 
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3. Results and Discussion 

The z-scan results for transmission as a function of z show a peak where the beam intensity is 
highest, due to saturation of the absorption (figure 5b).  The effect of upconversion is to shift the 
onset of saturation to higher intensities, because it depletes the 4I13/2 manifold.  The shift of 
saturation can be seen more clearly in a plot of effα  versus peak intensity (figure 5c).  The 

experimental data indicate a value of Cup that is approximately eight times larger than that 
reported in the literature.  We estimate the accuracy to be a factor of two. 

 

Figure 5.  (a) Beam radius as a function of z, (b) transmission as a function of z, and (c) effective absorption 
coefficient as a function of peak intensity.  Three runs at 1, 2, and 3 W are combined on the bottom two 
graphs.   
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The values we obtain for Cup are 2.3×10–17 cm3/s for the 0.57% sample, and 4.4×10–17 cm3/s for 
the 1.1% sample.  The nominal concentrations are 0.5% and 1%.  We adjusted the concentrations 
slightly to match the linear absorption, while keeping the cross section at its nominal value of 
1.18×10–19 cm2.  For low concentrations, Cup is proportional to concentration, as expected (1) 
(figure 6). 
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Figure 6. Upconversion coefficient as a function of Er atomic fraction at room temperature.   

 

Using the simulation and upup CC ~8= , it is possible to plot the losses due to upconversion as a 

function of both intensity and erbium concentration.  Increasing either intensity or [Er] resulted 
in more loss, as seen in figure 7.  The upconversion seems to scale linearly with [Er], although its 
relationship with peak intensity is more complicated. 
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Figure 7.  Losses due to upconversion as a function of both erbium doping and beam peak intensity.  Increasing 
either [Er] or peak intensity will cause more upconversion until a maximum upconversion rate has been 
reached.  

4. Summary and Conclusions 

In an Er:YAG laser operating at 1645 nm, no upconversion would ideally take place, and the 
pump photons would have a 1:1 ratio with emitted photons.  The only non-negligible heat 
generation would be from phonons that make up the quantum defect.  The presence of 
upconversion causes more heat generation and lowers the power of the emitted laser beam, 
putting an upper bound on the allowable pump beam intensity and [Er], both of which introduce 
limits in creating a high energy laser.  The results of the experiment show that the assumptions 
made were justified, that the experimental setup is effective at producing reliable information 
about the behavior of upconversion in Er:YAG, and that upconversion increases with [Er] and 
beam intensity.   
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Symbols, Abbreviations, and Acronyms 

CPU cooperative pair upconversion 

CW continuous wave 

DFB distributed feedback Bragg (laser) 

Er erbium 

InGaAs  indium gallium arsenide 

LIA lock-in amplifier 

TEM00 transverse electromagnetic, fundamental mode 

YAG yttrium aluminum garnet 
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